## Making Sense of Money

In fourth grade, your child will use the four operations to solve word problems involving money. In order to do this, she will first learn to decompose, or break apart, one dollar into smaller units. We call these units: quarters, dimes, nickels, and pennies. Ask your child: How many quarters make up one dollar? How many quarters make up two dollars?

## Decomposing Fractions

To decompose means to break apart. Your child has already decomposed whole numbers with number bonds, tape diagrams, and place value charts. In fourth grade, he will decompose fractions. Three-eighths is a fraction. We can decompose three-eighths into parts using a tape diagram as the visual model.

## Units of Measure

In fourth grade, your child will use the metric system to measure length, mass, and capacity. Length refers to the measurement of something from end to end. Long lengths are called distance. Mass refers to the measure of the amount of matter in an object. Capacity refers to the maximum amount that something can contain, commonly called volume.

## Partial Products

When your child first learns to multiply two two-digit numbers, she will use the area model. This visual tool illustrates how to decompose numbers and find four different products. As her skills improve, she will move from this pictorial model into a concrete method called partial products. Using partial products to solve forty-three times fifty-six, looks like this. She will start by multiplying tens times tens.

## Area Model

When first learning to multiply two two-digit numbers your child will use the area model. To start, your child will use her knowledge of place value to decompose into tens and ones. To decompose means to break apart. Let’s decompose these numbers by the value of each digit. The value of two tens is twenty.

## Multiplication Fluency

Your child’s introduction to multiplication is through repeated addition. He will draw an array to visualize, or see, five groups of four stars. He will count the stars and find the total. As his understanding improves, he will skip count to find the total more efficiently. Your child will use a variety of visual models, to represent multiplication as he works toward developing multiplication fluency.

## Rounding: Nearest 10 or 100

Learning to assess the reasonableness of an answer is an important mathematical skill. It’s your child’s way of seeing if she’s on the right track when problem solving. Sometimes we use rounding to estimate a solution. In third grade, your child will round whole numbers using a vertical number line and round to the nearest ten or to the nearest hundred. Let’s round seven-hundred sixty-two to the nearest hundred.

## Solving 2-Step Word Problems

In third grade, your child will solve two-step word problems using addition, subtraction, multiplication, and division. Let’s try one: There were ten adults and five children at the movies. Each adult ticket costs \$8.00 and each child ticket costs \$3.00. What is the total cost of all the tickets? What is this question asking us to find?

## Fractions on a Number Line

In third grade, your child will represent fractions in pictures, number bonds, and on a number line. These drawings, or models, allow your child to develop a visual understanding of what fractions really are. Remember, the fraction one-third means that three equal parts make up one whole. How do you represent fractions on a number line? In third grade, your child will begin by placing fractions between zero and one.

## Fractions: Modeling with Number Bonds & Tape Diagrams

When a whole is broken into equal parts each part is a fraction. Each part of this fraction is one-half. Your child will draw tape diagrams as a visual tool to help him break apart one whole. In third grade, your child will break one whole into two equal parts, three equal parts, four equal parts, six equal parts, and eight equal parts. Let’s solve a third grade word problem: Braydon had pizza for lunch.